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NOMENCI .ATURE 

%, specific heat at constant pressure: 
d. pipe diameter: 

~'w 
f ,  friction factor. ½in~-h2 : 

k, thermal conductivity; 
q, heat flux per unit area: 
t, temperature: 

t ' ,  dimensionless temperature, ( t , . -  t)cv,Lr,. ' 
t]w lg* 

7-, absolute temperature; 
u. velocity; 

u*, friction velocity, ! ; 

x, axial coordinate: 
X, x.d: 
y, distance from pipe surface; 
)'+, u*)'..'v; 
(p~j,, average Cp ovcr temperature range tw to tb; 
~q, average k over temperature range t,. to t~; 
?pu,, average cv over temperature range t¢ to tb. 

Greek symbols 
p, density: 
p. viscosity,; 
v, p;p; 
r~, wall shear stress; 
~:, eddy diffusivity of momentum; 
~.~, eddy diffusivity of heat: 
2, fraction of temperature difference occurring 

across sub-layer; 
Nu, Nusselt number; 
Pr, Prandtl number; 
Pr,, turbulent Prandtl number. ~:,%; 
Re, Reynolds number: 
St, Stanton number. 

Suffixes 
h, bulk: 
I, at edge of sub-layer; 
r, reference: 
w, wall; 
O, constant property value. 

I N T R O D U C T I O N  

THE SCOPE of this paper is heat transfer to (or from) fluids 
in turbulent flow through smooth pipes with wall-fluid 
temperature differences large enough to produce significant 
variations of the relevant physical properties ct,, k, p, p, 
but not sufficiently large to require consideration of buoy- 
ancy or acceleration effects; compressibility also is excluded. 
This situation is of great engineering importance as evi- 
denced by the large number of experimental and theoretical 
investigations and reviews devoted to it. 

The relevant dimensionless variables are well known, i.e. 
Nub = f(Reb, Prh, cp,,.:cvb, k,."kb, P~,...:Pb, I,t~:Jto,) 

provided also that the forms of the variations of the h)ur 
physical properties over the relevant temperature range are 
specified. Development of a comprehensive correlation in- 
volving so many variables is a formidable task. Experi- 
mentally it requires a large body of reliable data. Extension 
of the semi-theoretical methods which have been used for 
the constant-property case can only be tentative, particularly 
where p and p variations are involved owing to the coupling 
of the momentum and energy equations. Inevitably the 
many correlations proposed so far have involved simplify- 
ing assumptions either about the form of the above math- 
ematical function or the adequacy of reference values of the 
physical properties. In practice, use of alternative corre- 
lations for design purposes frequently reveals discrepancies 
which are unacceptable. 

For heat conduction in solids there exists a mathematical 
transformation which enables solutions for temperature- 
dependent thermal conductivity to be deduced from known 
solutions for constant conductivity. In this paper the trans- 
formation is extended to heat transfer in pipe flow with 
coupled % and k variations, and its usefulness in the search 
for a well-based general correlation is then examined. 

I'I.'RBL I.EN'I" PIPE FLOW WITH V.~tRIABI.E SPECIFIC I l l :AT 
AND THERMAL C O N D U C T I V I T Y  

We make the usual assumption that the effective con- 
ductivity can he expressed as the sum of a fluid and a 
turbulent conducti~ ity: 

dt 
= - (k + pep.%) ~l-y. 11) 

We now consider (hypothetical) fluids for which density and 
viscosity are constant, while k and cp vary identically with 
temperature, i.e. 

k Cp 

kb = - - "  ['pb 

Hence Pr = constant = Pr~. 
Furthermore, since the turbulent Prandtl number, Pr, = 

F(Re, Pr, y+), it is not affected by the coupled variation of 
c t, and k. We need no further information about Prt or ~.v 
in the following analysis and therefore assume no particular 
turbulence model. 

In dimensionless form equation (1) becomes 

4 =_c e ( 1 + 1 , : lOt+ 
4. ,.p..\e~ ~ ,  v /&:  {21 

where the factor within brackets is unaffected by the vari- 
ation of q, and k. We now consider the corresponding 
equation for the temperature tg in the constant property 
case, take the radial variation of heat flux, ~),.'O~, to be the 
same in both cases (this is discussed in the Appendix), and 
hence obtain 

cp dr* dto 
- - -  for equal Re and Pr. 

ct,~. d)'* dy" 
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Hence 

c p d t  = k d t "  -: t,;. 131 
('p~ ~. o ~. 

This is recognisable immediately as the exact analogy of the 
temperature transformation in heat-conduction problems 
with variable conductivity. The distribution of the trans- 
formed temperature, given by either of the integrals, is 
identical to the distribution t,~ in the constant property 
case (for the same Re and Pr). 

It also follows from 13) that 

1 ( ' ;  th+ % ,s, 
c t  ,- c p d t "  = 

,, ~, o ('p,, 

is constant for fixed values of  Re and Pr. Therefore 

q,,,~,(t w- /b i t  ~. 
. . . . . . . . . . . .  ¢ (Re .  Pr) 

t l w U *  

and 

q., (.1.'2) 1 -~ 
. . . .  ~(Re, Pr). 

(t,.--tb)pUt(p,,.b ¢(Re, Pr) 

Thus for the special cases of coupled q, and k variations 
(of any form), all heat-transfer results are reduced to the 
form of the constant property correlation, St = ~b(Re, Pr), 
by forming St and Pr from the mean values of q, and k 
over the temperature range th to t.,. The mean % has been 
used previously, particularly in heat-transfer correlations 
for supercritical pressure fluids where it appeared essential 
to include weighting for the very wide range of %, including 
localised peaks. It is perhaps surprising that a mean con- 
ductivity does not seem to have been considered in view of 
its established use in conduction problems. 

Before we proceed to examine the significance of the 
above transformation it is worth comment ing  upon the 
somewhat surprising fact that specific results are derived 
without an eddy diffusivity model. Firstly, the eddy dif- 
fusivity approach postulates two heat-transfer processes in 
parallel, a laminar and a turbulent conductivity. The 
coupling of % and k, and the exclusion of viscosity and 
density variations, are sufficient to ensure that, at any radial 
position, both heat-transfer processes are affected to the 
same extent while the flow slructure is unaffected. Secondly. 
the results relate only to St/Sto;  absolute values of St would 
require a detailed model. 

THI,~ SICNIFICAN('I£ 01, I"HE TRANSFORMATION 

What is the value of results, even fair ly r igorous results. 
for a hypothetical fluid for which only % and k are tem- 
perature dependent and coupled such that %,'k is constant ? 
Perhaps as a part ial test of  the soundness of  theoretical 
calculations or  empirical correlations. However, in the case 
o f  theoretical calculations, no test is provided for the correct- 
ness o f  the eddy diffusivity model since we have noted 
already that any such model leads to the present results 
for coupled % and k. These results just provide a check on 
the computat ional  soundness and internal consistency of  
the calculations for variable physical properties. 

The present results are l ikely to be o f  most use as a test 
of  the many existing correlations embracing variable proper- 
ties or in provid ing guidance for the development o f  new 
ones. As noted in the Introduction. a comprehensive cor- 
relation poses a formidable problem, most workers have 
resorted to drastic simplifying assumptions,  and the designer 
is faced with a confusion of correlations and a wide spread 
of design data for a particular application. In some instances 
the irregularities in a correlation may be obvious on in- 
spection [1]. Compar ison with the present results for % and 
k variations may be a useful further check. The objection 
might be raised that it would not be reasonable to expect 
a practical correlation to cover a hypothetical fluid. In 
reply one might point out, firstly, that al though a fluid with 
only % and k variations, directly coupled, is a hypothetical 

~hol'ler ('onlFlltlnlC~ltJon~ 

one it is not theorcticall', unacceptable: secondly, that ;t te~,l 
i n v o l v i n g  O l l l }  t 'p and k variations is not excessive b OllClOtl%. 
We now need to look bricfl,, at t.', pical forms ofcorrchition, 

('orrelations tonlainint] proDerl ) ralio~ 
Although often considered in principle, actual corrchttit,u.., 

of this type are rare. excepl for liquids whcrc onh the 
viscosity variation. P...Pb. is considered signifit:unt, t 'or 
gases, all four properties ma), be temperature dependcnt 
hut. on the basis that each depcnds upon the absolute 
temperature, the property ratio'~ are t,suall~ lumped to- 
gether and their combined cfl~:ct represented b) a function 
Iwhieh ','aries with the gas as ~cll as with thc authcwp of 
71,. "I~. These arc not general correlations zmd it i., llt:,I 
possible to separate the eftcots of cp and k for comparison 
with the present work  Similarly, man)  correlations for 
near-critical fluids arc purely empirical, v,tth I'actor~, based 
on just one or t~o  properties repre~,enting the cl]~cls of 
all four. One of the more explicit correlations has been 
given b) Petukho~ et ./. [2]: 

c, i I . ,~ , ,  3 3  i ~ 

!tt, ,~ , Ct, h 

2 

o 

~ S  o6- 

/ o4- 

03 

6 / 

-Z,(0' 

I 0  2 4 I 0  

k ¢p. 
(ond ) 

F'I(L 1. 

For the case of coupled % and k variations Iwith p and ,, 
constant), and in particular % and k varying linearly with 
temperaturc. Petukhov's equation becomes 

k n331 1 ̀..3, 'Vuo( " .~( 1 k 

whereas the transformation described above yields 

.,~,,, ( k 

The two forms are compared in F ig  1. It is seen that the 
agreement is good for 0.25 < k,..kb < 4.0. For lower ~alues 
ofk~,:kb the factor (k,..:kb) °3'~ in Petukhov's correlation over- 
stresses the effect of k~. This limited test by no means 
validates Petukhov's  correlation, but it helps to define the 
range over which it might be a fair approximation.  The 
correlation might have been improved by representing the 
conductivity variation by (,~+.khl to a power of about 0.65. 

Correlations inroh'ing f luid properties ut a relerence 
temperature 

It has often been assumed that correlations established 
for constant properties could be continved unchanged for 
variable property situations provided one could identify the 
correct reference temperature at which to evaluate the 
physical properties. This method is open to question, for 
example it is very doubtful whether the corrcct weighting 
can be given to all four properties by evaluating them at 
the same temperature. Leaving that aside, w.e recall that 
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for coupled cp and k variations, heat-transfer results are 
completely correlated by introducing (p,a, and ~,~b- If k and 
cp vary linearly with temperature, 

kw+kb 
~.b . . . . . . .  k, 

2 

provided 

t . . + t  b 

t r = . . . .  . 

2 

Therefore, for property variations small enough to be 
regarded as linear, the conventional film temperature satis- 
fies the present limited test. No single choice of reference 
temperature could be correct for non-linear property 
variations. 

The rational choice o f  reference values for k a m t  cp 
In the preceding illustrative examples we have been 

testing correlations which, al though arbitrary in form, might 
at least prove to be acceptable approximations.  However 
our real objective is the development of more satisfactory 
forms of correlation, and we enquire whether ,~,~, and (v~  
might have an extended usefulness beyond those special 
cases in which the temperature dependence of k and cp are 
identical. Unfortunately there is no good reason to expect 
such an outcome. We recall that the transformation 
presented in this paper is valid because, with coupled cp and 
k, the laminar and turbulent conductivities are affected to 
precisely the same extent. The emergence of k,,b and ?p,a, 
does not signify that either k or cp is significant over the 
full temperature range t~ to tb, but that k and cp together 
control the heat-transfer process over the full temperature 
range. We arc at present engaged upon extensive calcu- 
lations of the effect of physical property variations, using 
a particular eddy diffusivity model, and have confirmed 
that a correlation based upon J~.~ and cj,,a, fails in situations 
where k and cp do not vary identically. This is hardly 
surprising. 

While the use of average properties seems inherently 
promising, if we are to make further progress we might 
expect to have to determine appropriate averages ofk and cp 
reflecting the regions of the pipe cross-section in which 
each is important.  For example, if there was a truly laminar 
sub-layer it would not seem appropriate to include that 
part of the temperature range in forming an average cp; 
conversely, an average k might be based upon just that 
laminar sub-layer part of the temperature range. A fairly 
straightforward development confirms this expectation and 
leads to the conclusion that a constant property correlation 
could be extended to embrace variations of cp and k, not 
necessarily coupled, through the introduction of 

/~a, the average over 0 < t ~ < .2tb- 

and 

¢-p~b, the average over ~.th + < t ÷ < th + 

where 2 is the fraction of the temperature difference occurring 
across the sub-layer in the constant property case. A simple 
laminar/turbulent two-layer model can be a tolerable 
approximation for Pr not too far from unity, which includes 
all gases. Hence this development is potentially useful. 

It is possible to deduce an effective value for 2. The steps 
in the argument  are as follows: 

(a) For Pr not too far from unity, the constant  property 
data can be represented by Nuo = CR~P~o .  

(b) This correlation can be extended to variable k and cp 
by introducing kwl and ¢-pzb. 

(cl The correlation (a) can also be extended to the special 
case of coupled k and cp variations by introducing 
/~wb and (p~,. For this special case, the alternative 
forms (b) and (c) must  be equivalent. This leads to 
the conclusion that, for relatively small property vari- 
ations, 2 = 1 - n ,  say 0.6. 

In conclusion, we note again that it is questionable 
whether a completely general correlation is attainable, even 
when limited to moderate property variations for which 
such additional effects as buoyancy are not significant. A 
series of correlations, each with its defined range of appli- 
cation, seems a more realistic objective. In devising such 
correlations to represent the results of both experiment and 
computat ion it is desirable to proceed on a more rational 
basis than can be discerned in the existing arbitrary forms. 
It is our hope that the transformation described in this paper 
provides hints for the construction of more useful cor- 
relations. 

The transformation, like the corresponding one for 
conduction problems, is applicable, in principle, to a variety 
of configurations, not just smooth pipes. For each case it 
would be necessary to justify that the distribution ~l,,'c)~. is 
not significantly altered by the property variations. 

REF'EREN(.~ES 

1. M. B. Ibrahim and V. Walker. Correlations for heat 
transfer to variable property fluids in turbulent pipe flow, 
Int. J. Heat Mass Transfer 19, 126 (1976). 

2. B. S. Petukhov, E. A. Krasnoschekov and V. S. 
Protopopov, An investigation of heat transfer to fluids 
flowing in pipes under supercritical conditions. Proc. 196 I 
Int. Heat Transfer Conference, Boulder. U.S.A., pp. 569-- 
578 I1961). 

APPENDIX 

The Radial Variation of  Heat Flux, (t/(tw 
I n a discussion of a fully-developed heat-transfer situation 

it is necessary to specify the thermal boundary  condition 
along the pipe. We start from the basic case of uniform 
wall heat flux. For the constant property situation, the 
fully-developed state includes a radial temperature profile 
of unchanging form and Ot/~x independent of radial posi- 
tion. For the variable property case the properties are 
varying in the x-direction owing to the temperature gradient 
and the existence of a fully-developed situation is not self- 
evident. It is therefore unavoidable that we compare the 
fully-developed constant property case with a less well 
defined, not strictly fully-developed, variable property 
situation. 

There are reasons for the belief that this complication 
will not interfere seriously with the comparison : 

(a) Physical property gradients in the axial direction are 
much smaller than in the radial direction. 

(bt Quite drastic approximations to the true ~/~,, dis- 
tribution are known to produce only minor changes 
in calculated Nusselt numbers.  

We have also examined the problem from another point 
of view: What  axial variation of c),,. would produce the 
same radial variation O/qw as in the constant property case? 
Approximate calculations then lead to (l/~w)(d~),,/dX) = 4St 
which is small compared with unity for a wide range of 
Re and Pr. We are therefore comparing 

(a) the fully-developed Nuo for uniform heat flux with 
(b) Nu (not truly fully-developed) for a slowly varying 

wall heat flux. 
The fact that Nu is known to be insensitive to axial vari- 
ations of ~)w reinforces the belief that this is a satisfactory 
basis for examining the effect of physical property variations. 


